

#### NEUTRINO ASTRONOMY

#### **THE PHYSICS GOALS**



## REQUIREMENTS, PROBLEMS OF v-DETECTION FROM COSMIC SOURCES

- ULTRA-LARGE DETECTOR VOLUMES NEEDED
   RATES NEVERTHELESS VERY SMALL
- INDIRECT DETECTION THROUGH NEUTRAL /CHARGED CURRENT REACTIONS
- USE OF CHERENKOV LIGHT IN LARGE WATER VOLUMES
- SCINTILLATION LIGHT IN LARGE LIQUID SCINTILLATOR DETECTORS
- SHIELDING PROBLEMS -> DETECTORS DEEP UNDERGROUND FOR LOWER ENERGY: NEED OF LOW BACKGROUND MATERIALS
- **DUE TO EARTH ROT**ATION  $4\pi$  LIGHT DETECTOR COVERAGE
- CALIBRATION A PROBLEM
- DETECTORS ALSO USEFUL FOR OTHER FUNDAMENTAL PHYSICS STUDIES

# THE TEMPLATE DETECTOR FOR ALL LARGE VOLUME WATER DETECTORS SUPERKAMIOKANDE



# Hyper-Kamiokande

#### 1 Mton water Cherenkov detector at Kamioka



# **Comparison of 3Generations of Kamioka Nucleon Decay Experiments**

|                            | Kamiokande            | Super-Kamiokande                     | Hyper-Kamiokande |
|----------------------------|-----------------------|--------------------------------------|------------------|
| Mass                       | 3,000 t<br>(+1,500 t) | 50,000 t                             | . 1,000,000 t    |
| Photosensitive<br>Coverage | 20 %                  | 40 % (SK-I and -III)<br>20 % (SK-II) | ?                |
| Observation<br>Started     | 1983                  | 1996                                 | ?                |
| Cost (Oku-Yen)             | * 5                   | 100                                  | 500?**           |

\*1 Oku-Yen  $\approx$  1M\$

\*\* Target cost; No realistic estimate yet



#### HYPER KAMIOKANDE



 DUE and TRE have a choice to pu Gd in one module in order to enhance the sensitivity to lowenergy antineutrino detection.
 See, an interesting talk by Vagins

on GADZOOKS



#### **UNO Detector Conceptual Design**

40%

Only optical

separation

10%

#### A Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit
- Cost (built-in staging)

**UNO Collaboration** 99 Physicist

40 Institutions 7 Countries



60x60x60m<sup>3</sup>x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 # of 8" PMTs: 14,900

NNN05-Aussois, April 2005

# Next generation .100 kton liq. Ar detector



#### A tentative detector layout

<u>Single detector</u>: charge imaging, scintillation, Cerenkov light

| Dewar                          | $_{\phi}$ $\thickapprox$ 70 m, height $\thickapprox$ 20 m, perlite insulated, heat input $\thickapprox$ 5 W/m² |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Argon storage                  | Boiling Argon, low pressure<br>(<100 mbar overpressure)                                                        |  |
| Argon total volume             | 73000 m³, ratio area/volume ≈ 15%                                                                              |  |
| Argon total mass               | 102000 tons                                                                                                    |  |
| Hydrostatic pressure at bottom | 3 atmospheres                                                                                                  |  |
| Inner detector dimensions      | Disc $\phi \approx 70$ m located in gas phase above liquid phase                                               |  |
| Charge readout electronics     | 100000 channels, 100 racks on top of the dewar                                                                 |  |
| Scintillation light readout    | Yes (also for triggering), 1000 immersed 8" PMTs with WLS                                                      |  |
| Visible light readout          | Yes (Cerenkov light), 27000 immersed 8" PMTs of 20% coverage, single γ counting capability                     |  |





 $\bullet n \to \nu K^0 \to \nu \pi^0 \pi^0$ 



65 cm

T600: Run 939 Event 46

#### Gas Electron Multiplier GEM (F. Sauli et al., CERN)



#### 100x100 mm<sup>2</sup>

A gas electron multiplier (GEM) consists of a thin, metal-clad polymer foil, chemically pierced by a high density of holes. On application of a difference of potential between the two electrodes, electrons released by radiation in the gas on one side of the structure drift into the holes, multiply and transfer to a collection region.





#### Thick Large Electron Multiplier (LEM)

Thick-LEM (vetronite Cu coated + holes)

Sort of macroscopic GEM

A priori more easy to operate at cryogenic temperature



Three thicknesses:
1, 1.6 and 2.4 mm
Amplification hole diameter = 500 μm

Metallization (thickness 17 microns)

area without metallization at the edge of the hole (17 microns)



Electron drift lines from a track



#### Next-generation liq. Scintillator detector Possible locations

# LENA





#### **DETECTORS FOR HIGH ENERGY v ASTRONOMY**

E>100 GeV

# Possible neutrino point sources:

#### Supernova remnant (Crab nebula)



#### Microquasar



#### Active Galaxy (e.g. M87)



#### galactic

#### extra-galactic

# **Physics motivation**

- Astrophysics
  - VHE Neutrino astronomy
  - Composition of jets
  - Engine of cosmic accelerators
- Particle physics
  - Origin of UHE cosmic rays
  - Massive particles (GUT)
  - Dark matter
  - Neutrino properties ( $v_{\tau}, \sigma$ )

# Detection Method for $v_{\mu}$

• Cherenkov photons are detected by array of PMTs

 Tracks are reconstructed by *maximum likelihood* method of photon arrival times.



# Neutrino detection Χ

interaction

N

**Cherenkov light from**  $\mu$  **induced by**  $\nu$ interaction detected by 3D PMT array Time & position of hits allow the reconstruction of the  $\mu$  (~  $\nu$ ) trajectory



#### Equipped volume 0.1 km<sup>2</sup> x 0.4 km (=800 x SuperK)

#### A closer look at the Mediterranean Sea



P. Piattelli, CRNT meeting, Paris 16-17 december 2004



Fig. 18 Concept for a NEMO Tower



Fig. 17. Layout of the ANTARES array.

#### NESTOR TOWER







# **BAIKAL NT-200**

#### **Baikal NT-200**

| Location: Lake Baikal      |          |
|----------------------------|----------|
| Commissioned:              | 1997     |
| No. of Strings:            | 8        |
| Optical Sensors:           | 192      |
| Depth:                     | 1100m    |
| Instrum. Volume/km3:       | 10-4     |
| µ-Effective area (1 TeV):  | ≈2000 m² |
| Angular resolution (1 TeV) | : 3°     |

Deployment and maintenance: From frozen surface in winter.



# BAIKAL NT200+

Baikal upgrade: NT-200+ Commissioned:

April 2005

Addition of 3 outer strings 12 PMT each Other improvements: DAQ, new cable to shore,...

Increase in sensitivity by factor 3-4.

Preparing a design for: Giant Volume Detector, km scale



# **AMANDA-II**

#### **AMANDA-II**

Location: South PoleCommissioned:2000(AMANDA B10 since 1997)No. of Strings:19Optical Sensors:677Depth:1550-2000mInstrum. Volume/km3:0.016 $\mu$ -Effective area (1 TeV):>20000 m²Angular resolution1.6 - 2.5°

Deployment from ice surface.

Architecture: individual power lines (copper) and analog signal/calibration fibers to each sensor.



#### **AMANDA-II**

#### New South Pole Station



#### **ANTARES**

Location: Mediterranean Sea, 40 km off shore

Construction schedule:2005 - 2007No. of Strings:12Optical Sensors:900Depth:2100-2400mInstrum. Volume/km3:0.011



μ-Effective area (1 TeV): 0.016 km<sup>2</sup>
Angular resolution (>10 TeV): <0.3°</li>
Architecture: local digitization,
transmission of all data to shore.



# Measurement of the water current profile using the Doppler effect





# **Baseline and Burst Fraction**





#### **NEMO**

NEMO in R & D, Phase 1 (to 2006) Location: (≈80 km) off the coast of Sicily (Capo Passero) **Optical Sensors:** 5600 ≈2800 m - 3400 m Depth: Instrum, Volume/km3:

Detailed measurements and studies of water and other site parameters.

Medium is found excellent.





# Tower structure



#### **NESTOR**



#### IceCube

Construction:

2004 - 2010

In-Ice Array:No. of Strings:80Optical Sensors:480Depth:145Instrum. Volume/km3:0.9 $\mu$ -Effective area (1 TeV):0.8Angular resolution $\approx 0.0$ 

80 4800 1450-2450m 0.9 0.8 km<sup>2</sup> ≈0.6°

Architecture: individual power and communication lines from surface.

Surface Array - IceTop: Surface air shower array, 160 Frozen water tanks w 2 sensors each.



## IceCube



January 2005: 1 string and 8 tanks deployed DOM (Digital Optical Module) Power: 3 W Digitize at 300 Mhz (and 40 MHz) Send all data to surface over copper Two sensors/twisted pair. Flasherboard with 12 LEDs Local HV



Clock stability:  $10^{-10} \approx 0.1$  nsec / sec Synchronized to GPS time every  $\approx 10$  sec at a precision of rms = 2 nsec



- 80 strings (60 PMT each)
- 4800 10" PMT (only downward looking)
- 125 m inter string distance
- 16 m spacing along a string
- Instrumented volume: 1 km<sup>3</sup> (1 Gton)
- First string to be deployed in january 2005



# **Tracks and Cascades**

#### O(10 km) long muon tracks: neutrino astronomy

Electromagnetic and hadronic cascades:





|                                                                                  | Muons                                                                          | Cascades                                                                                |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Angular resolution<br>(background rejection, source identification<br>astronomy) | Good: 0.3° to 3°<br>Depending on energy and<br>detector/medium                 | Relatively poor: Possibly<br>10°(ANTARES?) to 30°                                       |
| Energy resolution<br>(background rejection, energy<br>determination)             | Typically, $\approx 0.25$ to 0.5 in Log(E <sub>µ</sub> ) (not E <sub>v</sub> ) | Good: ≈ 0.1 to 0.2 of log(E <sub>v</sub> ) (all energy deposited! Calibrate w. lasers.) |

#### Outlook

Perspectives

